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 
Abstract—Fingerprint-based wireless indoor positioning 

approaches are widely used for location-based services because 
wireless signals, such as Wi-Fi and Bluetooth, are currently 
pervasive in indoor spaces. The working principle of 
fingerprinting technology is to collect the fingerprints from an 
indoor environment, such as a room or a building, in advance, 
create a fingerprint map, and use this map to estimate the user's 
current location. The fingerprinting technology is associated with 
a high level of accuracy and reliability. However, the fingerprint 
map must be entirely re-created, not only when the Wi-Fi access 
points are added, modified, or removed, but also when the 
interior features, such as walls or even furniture, are changed, 
owing to the nature of the wireless signals. Many researchers 
have realized the problems in the fingerprinting technology and 
are conducting studies to address them. In this study, we review 
the indoor positioning technologies that do not require the 
construction of offline fingerprint maps. We categorize them into 
simultaneous localization and mapping; inter/extrapolation; and 
crowdsourcing-based technologies, and describe their algorithms 
and characteristics, including advantages and disadvantages. We 
compare them in terms of our own parameters: accuracy, 
calculation time, versatility, robustness, security, and 
participation. Finally, we present the future research direction of 
the indoor positioning techniques. We believe that this study 
provides valuable information on recent indoor localization 
technologies without offline fingerprinting map construction.  
 

Index Terms— Indoor positioning, Offline fingerprint map, 
SLAM, Inter/extrapolation, Crowdsourcing. 
 

I. INTRODUCTION 

In the 21st century, various mobile devices such as 
smartphones, tablets, and smartwatches have been developed, 
and they have been disseminated rapidly and widely [1, 2]. An 
increase in the number of mobile device users has led to the 
development of various services and applications based on the 
users' location, as determined by the mobile devices. The 
importance of positioning technologies that accurately capture 
the current location of a user has been well emphasized in 
various studies [3–10]. 
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Positioning technologies are broadly classified into outdoor 
and indoor positioning technologies. The outdoor positioning 
technology uses global positioning system (GPS) signals [11–
15]. However, GPS signals are satellite signals, which exhibit 
strong linearity, and are thereby subject to diffraction and 
reflection by buildings. Therefore, GPS signals cannot 
penetrate building walls and cannot be used for indoor 
positioning [16, 17]. The researchers have been studying 
various wireless media for indoor positioning, owing to this 
lack of availability of GPS [18–20]. 

The indoor positioning technologies use wireless fidelity 
(Wi-Fi) [21–24], Bluetooth [25–28], vision [29–31], 
geomagnetism [32], inertial sensors-based localization [33, 
34], ultrawide band [35], radio-frequency identification [36], 
ultrasound or sound [37, 38], light [39-42], and pedestrian 
dead reckoning (PDR) [43]. Among these technologies, Wi-Fi 
has the most advantages as compared to other infrastructures. 
Its main advantage is universality. There is no need to install 
additional devices in the building or add additional parts to 
mobile devices. Furthermore, many individuals can use Wi-Fi 
with ease because it is a more familiar technology than other 
technologies. Thus, the Wi-Fi infrastructure has attracted the 
most research attention, producing the greatest number of 
extant studies. 

Fig. 1 illustrates the taxonomy of indoor positioning 
techniques. In the early stages of a research in this field, the 
researchers performed indoor positioning using triangulation 
techniques that are already used outdoors. However, it is 
difficult to accurately determine the position indoors by 
triangulation, because of the obstacles in the room. Therefore, 
researchers chose to either improve upon the triangulation 
methods [44–48] or turn to fingerprinting techniques [49–52]. 

The fingerprinting technology is more accurate than 
triangulation or other technologies [53, 54]. However, it 
requires the preliminary step of offline fingerprinting map 
construction, which consumes a considerable amount of time 
and efforts. The fingerprinting map must be entirely 
re-constructed when the Wi-Fi access points (APs) are added, 
modified, or removed. Moreover, reconstruction of the 
fingerprint map is required whenever the interior features, 
such as walls or even furniture, are changed; because the 
changes in the wireless signal environment may warp the 
fingerprinting map. 

Indoor Positioning Technologies Without 
Offline Fingerprinting Map: A Survey 
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 To overcome these limitations of the fingerprinting 
technology, many researchers have conducted various studies. 
Extensive survey studies have reviewed and analyzed the 
various wireless indoor positioning approaches, and they 
present useful and valuable information on state-of-the-art 
technologies [55–65]. However, most of them focus only on 
fingerprint-based approaches. We can argue that the efforts 
required for offline fingerprint map construction are extremely 
labor-intensive, because indoor spaces are often enormous and 
complex, and they require repeated measurements.  

The purpose of this study is to present a timely, valuable, 
and detailed comparison of indoor positioning technologies 
that do not require the construction of offline fingerprint maps. 
We categorize them into simultaneous localization and 
mapping (SLAM) [66, 69–71], inter/extrapolation [72, 73] and 
crowdsourcing-based technologies [67, 76–82], and describe 
their algorithms and characteristics, including advantages and 
disadvantages. The SLAM technique creates a map of an 
unknown environment and keeps tracking the user’s position 
in real time with the estimated location of the person and the 
landmark of the environment. Many SLAM techniques have 
been applied to indoor location positioning, owing to their 
effectiveness and wide employment in various fields, such as 
self-driving cars, unmanned aerial vehicles, and robotics [68]. 
In this study, we survey the Gaussian process latent variable 
model (GP-LVM) [69], GraphSLAM [70], and WiSLAM [71]. 

Other studies focused on the location of APs rather than the 
use of SLAM technologies. They calculate the locations of 
APs and estimate the position of a user without offline 
fingerprinting map construction. Triangular interpolation and 
eXtrapolation (TIX) [72] and signal distance map (SDM) [73] 
are presented and discussed in this study. The increasingly 
widespread use of mobile devices within the population has 
led to the use of crowdsourcing technologies to construct a 
building map by obtaining data from users by exploiting a 
multitude of systems in a device [74, 75]. With the 
crowdsourcing technology, a user constructs a map using 
crowdsourced information and simultaneously provides 
information [76–82]. In this study, we review Walkie-Markie 
[81] and robust crowdsourcing-based indoor localization 
system (RCILS) [82]. We compare them in terms of our own 
parameters: accuracy, calculation time, versatility, robustness, 
security, and participation. Finally, we present the future 
research direction of the indoor positioning techniques. 

The remainder of this study is organized as follows. We 
present the concept and problem of localization techniques 
and fingerprinting techniques in Section II. In Section III, the 
SLAM series techniques are described in detail. Section IV 
presents the inter/extrapolation techniques. In Section V, we 
present the crowdsourcing-based technologies. Section VI 
analyzes the surveyed techniques based on important criteria. 
In Section VII, we present the future research direction of the 

 
Fig. 1.  Taxonomy of indoor positioning technologies. 
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indoor positioning techniques, and Section VIII concludes out 
study. 

II. BACKGROUND 

A. Localization Techniques 

Localization techniques ascertain the position or location of 
a stationary or moving person. In outdoor environment, most 
systems or services based on a user's location use GPS.  

GPS is the satellite signal-based navigation system [83]. 
GPS receives signals from more than three satellites. Thus, it 
can accurately estimate the current location of a user through 
trilateration by the rear intersection, using three different 
distances. The accuracy of GPS is within 4.9 m (16 ft.) radius 
under open sky [84]. However, in an indoor environment, we 
cannot use GPS. Fig 2 shows the reason for this phenomenon. 
The GPS signals are carried through waves, which have a 
frequency that does not move easily through solid objects, 
such as walls of buildings. Thus, unfortunately, the GPS 
signals cannot penetrate such kind of barriers with ease, which 
makes it useless in indoor positioning.  

The triangulation process with indoor infrastructure is one of 
the techniques that helps fill this vacant space of GPS. GPS 
uses a triangulation. Thus, researchers graft triangulation with 
indoor infrastructure, such as Bluetooth [85]. The indoor 
triangulation process measures the location of a user through 
the following process. First, the user's mobile device catches 
the wireless radio signals emitted by the indoor infrastructure. 
Further, the device selects three strongest signals from the 
same. The device calculates the distances between the 
infrastructure and the device using the strength of the selected 
signals. Finally, the device estimates the location of the user 
with the calculated distances. The triangulation process can be 
understood easily and is effective when it is used to measure 
location in a wide range. However, triangulation has several 
shortcomings concerning indoor localization. It cannot be used 

in an environment with less than three infrastructures. 
Moreover, it is dependent on signal strength. However, in an 
indoor environment, there are obstacles and room partitions 
that impede the smooth reception of signals and accurate 
measurement of signal strength. This causes a major error in 
distance calculation. Therefore, triangulation does not work 
well indoor with obstacles and room partitions. As a result, 
researchers have discovered a new technique, the 
fingerprinting technique. 

B. Fingerprinting Technique 

The fingerprinting technique is more accurate than the 
conventional infrastructure-based indoor positioning 
technologies, including triangulation technologies [86, 87]. It 
uses the existing infrastructure, such as Wi-Fi, to provide 
location-based services (LBSs) [88, 89]. This means that the 
fingerprint technology does not involve the installation of new 

 
Fig. 2. Blocked and reflected GPS signals. The devices cannot receive GPS
signals in indoor environment because of this phenomenon. 

 
Fig. 3. Offline training phase. 

 
Fig. 4. Radio map based on the fingerprint information. 

 
Fig. 5. Online location estimation phase. 
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infrastructure or hardware, thereby saving time and money.  
Fingerprinting-based systems involve two phases: the offline 

training and online location estimation phases. Fig 3 shows the 
offline training phase. In the offline training phase, the user 
moves in a room with various mobile devices, such as 
smartphone, tablet, and smartwatch. When the training device 
selects a position of interest from the movement path, the 
device collects a fingerprint of the position, in the form of 
received signal strength (RSS). Subsequently, the device 
creates a radio fingerprint map based on the fingerprint 
information, as shown in Fig. 4. Fig. 5 shows the online 
location estimation phase. In the online location estimation 
phase, the user moves in a room with the client device. The 
fingerprint measured by the client device is sent to the 
positioning engine within the client device. The positioning 
engine compares the observed fingerprint with the map 
produced during the offline training phase and returns the best 
match. However, three problems are associated with the 
fingerprint technique, which include time consumption, error 
in receiving RSS, and vulnerability to environmental changes.  

First, the fingerprinting technology includes a prerequisite, 
whereby fingerprints should be collected in the room in 
advance [90]. This means that the fingerprint must be 
collected using the training device well in advance. This 
activity consumes a considerable amount of time and efforts 
[91, 92].  

Second, the accuracy and precision provided by the existing 
fingerprinting map should not change, even when unexpected 
changes in the environment occur. For example, a location 
error of 2–3 m is relatively small in an outdoor environment. 
In an indoor environment, with such an error, the client device 
might indicate that the user is beyond the original position or 
beyond the wall based on the surrounding environment and 
time [93]. Thus, indoor positioning technologies require a high 
level of accuracy at any given time or setting. However, it is 
difficult for the fingerprint technology to satisfy this 
requirement because the phenomenon involves multipath 
propagation [94]. Contrary to the outdoor environment, the 
radio signals are reflected, attenuated, diffracted, or 
extinguished indoors by various obstacles, such as walls, 
pillars, and individuals. Considering this mode of propagation, 
several errors are caused, even in the conversion from RSS to 
distance.  

Finally, applications and services that use an existing 
fingerprinting map cannot use an old map if even a single AP 
is added, replaced, or modified in the indoor environment. 
Small changes to the indoor structures, including walls or even 
furniture, may nullify the usefulness of an existing 
fingerprinting map. In such a case, a new fingerprinting map 
will have to be created from scratch. This requires 
considerable time and effort again. Furthermore, the 
replacement or modification of an AP and changes to indoor 
structures are not rare. Hence, the use of offline fingerprint 
maps may impose a great burden. 

 

III. SLAM SERIES TECHNOLOGIES 

A. SLAM 

The SLAM technique is used by mobile robots to build a 
consistent map of an unknown environment, while 
simultaneously determining its location within the built map 
[95]. In SLAM, both the path of the person and the location of 
the landmarks are estimated online without the need of any 
previous knowledge of the environment or location.  

Fig. 6 shows the movement of a person through an 
environment, who checks the relative observations of the 
unknown landmarks with a device. At time k, the following 
values are defined. ݔ௞ is the state vector that indicates the 
orientation and location of the person. ݑ௞  is the control 
vector applied at time k-1 to estimate a state ݔ௞, which is the 
next location of the person at time k. ݉௜  is the vector 
describing the location of the ݅௧௛ landmark, which is assumed 
to be the true location at the same time. ݖ௜௞ is the observation 
taken from the person of the location of the ݅௧௛ landmark at 
time k.  

Along with the above values, the following sets can be 
generated. ܺ଴:௞ = {ݔ଴, ,ଵݔ … , ,௞} = {ܺ଴:௞ିଵݔ  ௞} is the set ofݔ
the passed person’s locations. ܷ଴:௞ ,଴ݑ} =  ,ଵݑ … ,  = {௞ݑ
{ܷ଴:௞ିଵ, ,௞} is the set of the control inputs. m = {݉ଵݑ ݉ଶ,
…݉௡} is the set of all landmarks. ܼ଴:௞ = {ݖ଴, ,ଵݖ …  = {௞ݖ
{ܼ଴:௞ିଵ,  ௞} is the set of landmark observationsݖ

SLAM estimates the location of user using the above values. 
Thus, SLAM requires the probability distribution for all times 
k. 

 
Pሺݔ௞,݉	|	ܷ଴:௞, ܼ଴:௞,  ଴ሻ (1)ݔ	

 
The probability distribution shows the joint posterior density 

of the landmark’s location and person’s state at time k when 
the recorded observations, control inputs, first state of the 
person, and time k are given. Generally, a recursive solution is 
advisable in SLAM.  

The joint posterior is calculated by the Bayes theorem [96] 
with a control input ݑ௞	and observation	ݖ௞, starting from the 
estimation of the distribution Pሺݔ௞ିଵ,݉	|	ܷ଴:௞ିଵ, ܼ଴:௞ିଵሻ	at 
time k-1. The calculation needs to define the state transition 
model Pሺݖ௞	|ݔ௞, ݉ሻ	and the observation model Pሺݔ௞	|	ݔ௞ିଵ,

Fig. 6.  The essential SLAM Problem.  
Fig. 6.  Essential SLAM problem. 
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 which describe the effect of the control input and	௞ሻ,ݑ
observation individually. 

The SLAM algorithm is implemented in a standard two-step 
recursive (sequential) prediction (time-update), and correction 
(measurement-update) form. The time-update is calculated as 
follows: 

 
Pሺݔ௞,݉	|	ܷ଴:௞, ܼ଴:௞, ଴ሻݔ	 ൌ ׬	 Pሺݔ௞	|	ݔ௞ିଵ, ௞ሻݑ	 ∗

	Pሺݔ௞ିଵ,݉	|	ܷ଴:௞ିଵ, ܼ଴:௞ିଵ,  ௞ିଵ (2)ݔ݀	଴ሻݔ	
 
The measurement-update is calculated as follows: 
 

Pሺݔ௞,݉	|	ܷ଴:௞, ܼ଴:௞, ଴ሻݔ	 ൌ	 
୔ሺ௭ೖ|	௫ೖ,௠ሻ୔ሺ௫ೖ,௠	|	௎బ:ೖ,௓బ:ೖషభ,	௫బሻ

୔ሺ௭ೖ	|	௎బ:ೖ,௓బ:ೖషభሻ
 (3) 

 
Equations (2) and (3) show recursive operations for 
calculating the joint posterior about the state ݔ௞ and map ݉ 
at time k based on all control inputs ܷ଴:௞, observations ܼ଴:௞, 
and time k. The map is constructed by merging the 
observations from different locations. Moreover, the state may 
be formulated by computing the probability distribution. The 
researchers applied this technique for indoor localization and 
obtained the following techniques. 
 

B. GP-LVM 

Brian Ferris et al. introduced GP-LVM, which maps a 
three-dimensional (3D) data to two-dimensional (2D) potential 
space [69]. The 3D data correspond to the signal strengths of 
all the APs in the environment, and GP-LVM maps the data to a 
2D space that is interpreted in terms of x and y coordinates. 

Generally, when the user performs indoor positioning by 
fingerprinting, the client device measures the signal strengths 
of the APs and stores them in the fingerprint map. Further, 
based on the generated fingerprint map, the client device 
compares the values of APs measured by the user’s device 
with the values of APs stored in the fingerprint map to 
estimate the user’s current location. However, in this 
conventional fingerprinting method, the stored AP values are 
fixed, and they cannot reflect any changes of the indoor 
environment.  

GP-LVM does not store the signal strength of AP as fixed 
location information. It treats the measured data as a latent 

variable. Subsequently, it stochastically models the 
relationship between the stored latent variable and the actual 
data measured by the client device and restores them through 
the optimization of the marginal likelihood. GP-LVM has 
three pre-requisites. First, APs that are located close to each 
other possess similar signal strengths, and the value of each 
signal strength is unique at distinct locations. Second, similar 
values of a signal strength are measured at close location to 
each other. GP-LVM requires this condition for detection 
when the loop of the path is closed (i.e., when the individual 
returns to a previously visited location). Finally, the locations 
that are sequentially measured in the data stream should be 
close to each other. This constraint models a fact that the data 
is collected by a person who walks through the building. 
Further, the path data prior to measurement is absent; thus, a 
user must additionally set the internal conditions of the 
building. While constructing a building model, the following 
three conditions should be set: the distance between 
consecutive positions, change in orientation between 
successive postures, and alignment of parallel line segments. 

Thorough experiments were conducted on one floor of a 
university building to verify the GP-LVM. Data from three 
paths with path lengths ranging from 250–500 m were 
collected. The AP data were collected using a handheld iPAQ 
[97], a standard Wi-Fi card, and a click-to-map-based 
annotation program to set the ground truth path. The 
movement path included three rooms and corridors of the 
building. Fig. 7 shows that GP-LVM presents the precise 
alignment of intersections and paths between corridors, 
although the structure of the building was not clarified in 
advance. The GP-LVM shows an error of 3.97 m in the test 
bed. However, the GP-LVM involves several problems. It 
requires the time complexity of O(n3); thus, it is difficult to 
operate it online on mobile devices. Additionally, it is difficult 
to apply GP-LVM in universal locations, given that the 
constraints of the place should be set in advance.  The 
GP-LVM also tends to compensate the produced map by using 
straight lines and right angles. The curved portion of the 
ground true path of the building is displayed only with straight 
lines and right angles on the produced map, as shown in Fig. 
7. 

 

 
                  (a) Actual path                         (b) Isomap technology                           (c) GP-LVM 
 
Fig. 7.  Experimental results maps of movement in a building. [69]. 
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C. GraphSLAM 

The GraphSLAM technology is commonly used for 
simultaneously estimating a trajectory and building a map 
offline [70]. GraphSLAM presents the parameterization of an 
indoor environment for typical mobile device applications.  

GraphSLAM does not consider the effect of signal density or 
the weakness on the signature uniqueness as important. The 
measurement results of the signals are attracted to similar 
adjacent measurements, except for the vector of all signal 
strength measurements. This feature provides sufficient 
information to reinforce the existing SLAM implementation, 
even if the signal is not sufficiently rich to guarantee the 
uniqueness of the wireless signature. GraphSLAM 
incorporates the low-cost inertial measurement unit (IMU) [98] 
data to provide SLAM solutions for both linear corridor and 
open atrium environments [99]. The data are used to introduce 
motion measurement capabilities into a common sensor model 
that is applied to a common crowdsourcing application. At 
most distances from a transmission node, GraphSLAM 
expects that all propagated radio waves have almost the same 
strength with any small region of free space. However, this 
relationship between nearby signal strengths in a wider area 
depends highly on a building’s structure and architectural style. 
To complement this, GraphSLAM simply interpolates a small 
area that can correspond to free space in the absence of a 
model for the building structure. 

GraphSLAM is formulated as a network of Gaussian 
constraints between positions of user ݔ௧  and landmarks of 
environment ݉௧ at time t. For each measurement ܼ௜ from 
any sensor in device, the state-measurement mapping function 
݄௜ሺ܆ሻ shows true measurements if the values of the state 
variables (ݔ௧, ݉௧) were as follows:  

 
ܼ௜ ൌ 	݄௜ሺ܆ሻ ൅	ߝ௜                          (4) 

 
where X = {ݔ௧ଵ, ,௧ଶݔ … ,݉௧ଵ,݉௧ଶ,…} is the collection of all 
states and variables. ߝ௜  is the noise added at the time of 
measurement. With the state-measurement mapping function 
݄௜ሺ܆ሻ, we can express the motion model of GraphSLAM. For 
example, in measurement with a pedometer between time ݐ௜ 
and ݐ௜ାଵ, the measurement is related to the state space by the 

following function: 
 

݄௜
௣௘ௗ௢௠௘௧௘௥ሺ܆ሻ ൌ 	 ௧೔శభݔ|| 	െ	ݔ௧೔||ଶ             (5) 

 
Similarly, in measurement with a gyroscope, the 

measurement is related as follows: 
 

݄௜
௚௬௥௢௦௖௢௣௘ሺ܆ሻ ൌ 	

௔௧௔௡ଶቀ௫೟೔శభ	ି	௫೟೔ቁି௔௧௔௡ଶሺ௫೟೔	ି	௫೟೔షభሻ

∆௧
      (6) 

 
where ∆ݐ ൌ ሺݐ௜ାଵ 	െ	ݐ௜ିଵሻ	/	2. 

For each sensor, the GraphSLAM measurement likelihood 
function is described by the definition of the 
state-measurement mapping ݄௜ሺܺሻ with the variance of the 
corresponding sensor noise ߪఌ ൌ  .ሻߝሺݎܸܽ

While the user is moving, the position of the user is x and 
the measurement time of the ݅௧௛ landmark is t. At each time 
௜ݐ  in the user’s path, the user has an inferred subjective 
location ݔ௧೔  deduced from GraphSLAM and a true objective 
location ݔ௧೔

∗  for the same time stamp in the ground truth path. 

Considering each objective location ݔ௧೔∗
∗ , the objective 

neighbors are marked by a point in r meters of ݔ௧೔
∗ . The 

moved distance between consecutive signal searches is given 
by r. Considering each objective neighbor of ݔ௧೔∗

∗ , the 

subjective location ݔ௧೔  has a corresponding subjective 
neighbor ݔ௧೔∗. The GraphSLAM output is extended such that 

the total moved distance matches with the total moved 
distance of the ground truth path. The localization error is 
defined to be the mean of the distance that defines the average 
of the distance ||ݔ௧೔ 	െ	ݔ௧೔∗||ଶ in all pairs (ݐ௜, ݐ௜

∗). 

For verifying GraphSLAM, researchers used 536 Wi-Fi scan 
traces captured over 17 min on one floor of a 60 m × 10 m 
university building, which is approximately 1.2 km in length. 
Fig. 8 shows that the results are very similar to those obtained 
for the ground truth path, although GraphSLAM does not 
require setting the interior shape in advance. The average 
localization error for pedometer and gyroscopes, as measured 
without Wi-Fi, is 7.10 m. Contrarily, GraphSLAM uses the 
same metric for comparison and exhibits an average 
localization error of 2.18 m.  

 

 
                   (a) Ground truth path                (b) Pedometer and gyroscope only          (c) Converged GraphSLAM path 
 
Fig. 8.  Comparison of positioning tracking results [70]. 
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GraphSLAM is developed to overcome the drawbacks of 
GP-LVM and to be used in a wider and more general indoor 
environment. When creating a large map, GraphSLAM 
requires only O(n2) operations for each iteration. It does not 
require set conditions, even if the internal information about 
the building is absent. However, its disadvantage is that O(n2) 
time-complexity remains arduous with respect to operation on 
mobile devices, and it can be applied only in offline mode. 
Further, GraphSLAM has a constraint that it expects the 
propagation of a signal to have the same intensity in a small 
region of free space. In the case of a wide space, where the 

above condition is not applied, there is a problem that the 
large space needs to be interpolated into multiple small spaces 
to overcome this limitation. If the interpolating of the space is 
performed incorrectly, the result can be much lower than the 
desired performance. 

 

D. WiSLAM 

WiSLAM is an indoor location positioning technology that 
integrates PlaceSLAM, which performs indoor location 
measurement through measured RSS values, and FootSLAM, 
which performs indoor location measurement using an 
accelerometer [71, 100, 101]. FootSLAM uses the Bayesian 
estimation approach and a particle filter [102]. The 
implementation of FootSLAM involves the use of Rao–
Blackwellized particle filter (RBPF) [103], and each particle 
of the particle filter consists of a user path instance and its 
associated map. The latter is obtained by dividing the applied 
location into hexagonal cells and estimating all conversion 
probabilities of the path. Extensive experimental results 
revealed that the convergence of mapping and localization 
occurs when a user uses up to 10,000 particles along a closed 
loop. 

In PlaceSLAM [100], the location where the user’s position 
is well recognized, and the proximity information related to 

 
Fig. 9.  Dynamic Bayesian network for WiSLAM. 

 
 
Fig. 10.  Simulation results based on assumption and algorithms [71]. 

 
(a) Experimental space 

 
(b) Normalization for two paths 

 
Fig. 11. Experimental results [71]. 
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the same is assumed. The complexity increases sharply when 
PlaceSLAM is associated with FootSLAM, although the 
convergence is significantly faster. Contrary to PlaceSLAM, 
WiSLAM provides the distance as opposed to proximity 
information in RSS measurements. In PlaceSLAM, a user 
must detect the proximity information manually, although the 
value measured by WiSLAM is fully automatic.  

WiSLAM first represents the pedestrian behavior by using a 
dynamic Bayesian network (DBN) [104], as shown in Fig. 9. 
The RSS is subsequently measured. At this time, it is assumed 
that the RSS of different APs are independent of the user's 
location, and WLAN maps of APs are also independent of 
each other. Under this assumption, we calculate the 
contributions of each AP separately and integrate them at the 
end. Additionally, different RSS measurements measured at 
the same AP are conditionally independent. Subsequently, 
WiSLAM derives this measured value with the Bayesian filter. 
Finally, the operation of WiSLAM is completed after 
WiSLAM learns the map.  

For verifying WiSLAM, a wide range of real data 
measurements were performed in an indoor space of 
approximately 20 × 40 m. A laptop equipped with Link 5100 
and an internal network device conforming to IEEE 802.11 
a/b/g [105] are used for the experiment. The APs used for the 
experiment are in compliance with Cisco Aironet 1130 and 
IEEE 802.11 a/b/g. For realistic scenarios, the researchers 
collect 10 datasets in the same path during the day time when 
the APs are the most active.  

As shown in Fig. 10, the probability density function of the 
location of AP is depicted through density plots at k = 1, 3, 5, 
7, 9, and 11, where the darker shade indicates higher values. 
The standard signal strength emitted by the previously known 
AP and the standard deviation of the RSS are assumed as 5 dB. 
Fig. 11(a) illustrates a test space, showing the location of an 
AP (green rectangle) for SLAM and two competing paths 
(successive blue paths). Fig. 11(b) shows the normalization of 
Fig. 11(a). The actual path is indicated by blue circles. The 
result of the above experiment shows a large error because the 
RSS of only one AP is used. However, the accuracy of 
WiSLAM increases when several APs are used.  

WiSLAM achieves a position accuracy of 5.4 m in an indoor 
environment of 800 m2. WiSLAM combines two SLAMs, 
which is more accurate than two SLAM schemes. However, 

considering that two SLAMs are collectively used, the 
computation process is rather complicated, which becomes a 
disadvantage because it becomes difficult to operate on an 
online device. 
 

IV. EXTRAPOLATION AND INTERPOLATION 

A. TIX 

TIX captures the user’s position using RSS values measured 
from at least three APs [72]. Fig. 12 shows the basic 
architecture of TIX. The client sends a location query to the 
location server. After receiving the query, the location server 
sends requests to the client and all APs to retrieve RSS 
measurements from all APs apart from themselves. For 
example, a client sends a location query to a location server in 
an environment with n APs. In this case, each AP reports the 
RSS values of the other (n − 1) APs, and the client reports n 
RSS measurements that includes all the APs. Further, the 
location server uses the measurements between the APs to 
generate multiple distance mapping curves for each observed 
AP. The generated curve maps the RSS values to the distance 
from the observed AP. 

After creating the mapping curves, the location server 
estimates the distance between each AP and the client using 
the appropriate mapping curve and RSS measurements. The 
server uses a simple heuristic called proximity in signal space 
(PSS) to select the appropriate mapping curve. PSS generates 
a mapping curve using the measurements of other APs, as 
measured by the AP that reports the highest value to the client.  

For example, Fig. 13 assumes that the RSS values of AP 1, 2, 
and 3 measured by the client are S1, S2, and S3, respectively. 
If the order of intensity at this time is S1 > S3 > S2, as shown 

 
Fig. 12.  Architecture of TIX. 

 
Fig. 13.  Proximity in signal space. 

 
 
Fig. 14.  Triangular interpolation. 
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in Fig. 9, the server estimates that the client is closest to AP 1. 
Thus, the server approximates the distance between the client 
and AP 2 and 3 through a mapping curve generated using each 
RSS value that AP 1 measures.  However, AP 1 does not 
measure its own RSS value; thus, the server generates a 
mapping curve of AP 1 using RSS of AP 1 measured at AP 3, 
which sends the second highest measurement value. The 
server estimates the final location of the client through the 
approximate distance between the AP and client calculated 
using the mapping curve and the location coordinates of the 
AP. Thus, the server uses the TIX algorithm. The TIX 
algorithm requires at least three APs. If there are three or more 
APs, then TIX choose the three optimal APs. TIX first forms a 
triangle with the positions of APs as vertices. Further, TIX 
uses the inner or outer divider of the sides of the triangle to 
estimate the final position of the client. In this case, two cases, 
triangular interpolation and extrapolation, are determined by 
the following conditions.  

Fig. 14 shows the TIX algorithm with an internal divider 
(i.e., triangular interpolation). The vertices P1, P2, and P3 of the 
triangle are the positions of the three APs AP 1, 2, and 3, 
respectively. The plane of triangle P1P2P3 is internally divided 
by points D1, D2, and D3. The location server provides the 
center of triangle D1D2D3 as the final position estimate.  If 
the length of side P1P2 of triangle P1P2P3 exceeds d1, then it is 
possible to obtain the distance between AP 1 and the client 
and d2, distance between AP 1 and the client, and point D1 that 
divides P1P2 by the ratio d1 : d2, using the following 
expression:  

 

21

2112
1 dd

dPdP
  D




  (7) 

 
where D1 includes the coordinates (D1x, D1y) of the internal 
divider, and P1 and P2 are the positional coordinates (P1x, P1y), 
(P2x, P2y) of AP 1 and 2, respectively. At this time, the length 
of d1 is longer than d2.   

In the case of AP 2 and 3 and in the case of AP 1 and 3, the 
server determines the points D2 and D3, which internally 
divide P2P3 and P3P1 based on the conditions in the previous 
step. The center coordinates of the triangle D1D2D3 formed by 
the points D1, D2, and D3 as obtained through the previous 
process corresponds to the final estimates positions of the 
current client.  

Fig. 15 shows the TIX algorithm with an external divider. In 
this case, the two sides of triangle P1P2P3 corresponding to 
P1P2 and P1P3, are externally divided by the points D1 and D3, 
respectively, and the side P2P3 is divided internally. The center 
of triangle D1D2D3 is given as the final position estimate. If 
side P1P2 of the triangle P1P2P3 is shorter than d1, then it is 
possible to obtain the distance between AP 1 and the client 
and d2, distance between AP 1 and the client, and point D1 
that divides the extension line of P1P2 by the ratio d1 : d2, 
using the following expression: 

 

21

2112
1 dd

dPdP
  D




    (8) 

where D1 is the coordinates (D1x, D1y) of the external divider, 
P1 and P2 are the positional coordinates (P1x, P1y), (P2x, P2y) of 
AP 1 and 2, respectively. At this time, the length of d1 is 
longer than d2. In the case of AP 2 and 3 and also in the case 
of AP 1 and 3, the server determines points the D2 and D3 that 
internally or externally divide P2P3 and P3P1 according to the 
conditions in the previous step. 

Specifically, TIX includes a position error of 5.4 m in an 
indoor environment with an area of 1020 m2. Thus, TIX does 
not need a floor plan in advance because it uses only the 
location information of the APs. However, the disadvantage of 
TIX is that the calculation process becomes complicated and 
time-consuming when the number of APs increases. 
Furthermore, TIX cannot be used if the number of APs is less 
than three. 

 

B. SDM 

SDM is an indoor positioning technology for locating a 
client device by using RSS values measured online in the 
same manner as TIX [73]. The operating principle of SDM is 
similar to that of TIX, because it uses inter-AP measurements 
to obtain the mapping function. However, the algorithmic 
computation differs from TIX in several respects. When data 
is received from the m APs, SDM commences the calculation 
as follows:  

 

))sb(log(de
m

0k
ik  iik  i 



  (9) 

 
where dik denotes the distance between ith (i = 1, 2, …, n) AP 
and each k-th (k = 1, 2, …, n) AP (dii = 0), and sik denotes the 
RSS of k-th AP that is acquired by the ith AP (sii = 0). As a 
result, the coefficient vector bi is solved as follows:  
 

-1TTT
i i )(SSS )log(db   (10) 

 
Using this, SDM can be expressed as follows: 

 
 
Fig. 15.  Triangular extrapolation. 



1553-877X (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2018.2867935, IEEE
Communications Surveys & Tutorials

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

10

 
-1TT )(SSS log(D)B   (11) 

 
where D = [d1, d2, …, dm] denotes a matrix of geographic 
distances, and di = [di1, di2, …, dim]T denotes a vector of 
geographic distances.  In the location determination step, the 
client measures the RSS from neighboring APs and searches 
for coefficients bi associated with each AP i. Subsequently, the 
geographical distance to the adjacent AP i in the client is 
calculated as follows:  
 

)exp(Bsd ii                (12) 

 
Thereafter, the server calculates the final estimated position 

of the client using the geographical approximation to the 
distance approximation from each AP to the client. 

The localization accuracy is within 3 m in a small 
department building, and this exceeds that of TIX. However, 
contrary to TIX, SDM may require some pre-deployment 
efforts in the AP distance mapping step. Additionally, the 
calculation is complicated in comparison to TIX, and the 
calculation time is relatively high because all APs are 
calculated. 
 

V. CROWDSOURCING 

A. Walkie-Markie 

Walkie-Markie is a crowdsourcing-based indoor positioning 
system that automatically generates an indoor map of a 
building by combining the users’ trajectory obtained with the 
smartphone’s inertial sensors with special landmarks called as 
Wi-Fi marks [81]. Fig. 16 shows the system architecture of 
Walkie-Markie. Walkie-Markie consists of the mobile client 
in user’s smartphone and the back-end-service in the cloud. 
When the user moves, the client collects regular Wi-Fi scan 
results and approximate trajectory information such as number 
of steps, stepping cycle, and direction of travel. The client 
generates Wi-Fi marks from the collected results and places 
them in a 2D map. The back-end-service uses the user’s data 
to create a pathway map.  

When a user with a smartphone moves, the mobile client 
measures the user’s stride and direction by using IMU built in 

the smartphone. It simultaneously scans for signals and uses 
them to detect Wi-Fi marks. A Wi-Fi mark is a special 
location termed as a RSS trend tipping point (RTTP), in which 
the trend of signal strength changes from increasing to 
decreasing. The reason for using RTTP to for the Wi-Fi mark 
is that it is relatively free from heterogeneity among different 
mobile devices and other environmental factors that affect 
RSS. The mobile client deploys the Wi-Fi marks by applying 
the gathered stride and movement direction information of the 
client device to the positioning algorithm. Further, the client 
passes the deployed Wi-Fi marks to the back-end-service. In 
the back-end-service, the service updates the Wi-Fi marks. 
The Wi-Fi marks can be deployed differently (i.e., in different 
locations) by multiple crowdsourcing paths, and thus the 
server uses clustering algorithms to cluster various Wi-Fi 
marks into a single Wi-Fi mark. A major challenge in the 
Walkie-Markie system involves correcting the inaccuracy of 
IMU-based displacement measurements such as stride or 

 
 
Fig. 16.  System architecture of Walkie-Markie. 

(a) Path map made from 40 minutes after starting the movement 

 

(b) Path map made from 100 minutes 

 
Fig. 17.  Path maps sorted by path data of different users. The blue stars
located on the path are Wi-Fi marks [79]. 
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directional errors. To compensate for these errors, the 
back-end-service uses the Arturia algorithm [106], which 
removes the noise of IMU measurements and assigns optimal 
coordinates to the Wi-Fi marks. After calibration with the 
Arturia algorithm, the service obtains and places Wi-Fi marks 
inside the 2D plane with the graph insertion algorithm using 
the path of the client device. 

Researchers conduct some experiments in offices with 
conference rooms, cubicles, and large open spaces to test the 
system. The internal area of the office is 3600 m2, and the total 
length of the internal passage is 260 m. A person moves 
through the passageways and spaces in the office with the 
client device. The quality of the path map is improved by 
information related to more users as shown in Fig. 17. After 
randomly walking for 100 min, the result map in Fig. 17(b) is 
very close to the actual path. 

The average position error of Walkie-Markie is 1.65 m. 
Walkie-Markie does not require any conditions for the map 
construction. The only assumption of Walkie-Markie is that 
the environment must deploy APs, which is necessary for the 
operation of the system. However, it does not require 
knowledge of their locations. Additionally, IMU is used to 
increase the accuracy of the localization and to further 
enhance its reliability with various algorithms. However, 
Walkie-Markie operates depending on the data acquired by 
IMU at the beginning of the system, and therefore the sensor 
or the device itself may receive incorrect data due to failure. In 
this case, it significantly differs from the data obtained by 
other users; thus, it is difficult to generate an accurate path 
map. 

 

B. RCILS 

RCILS is a crowdsourcing-based indoor positioning system 
that constructs signal mapping by using motion data and signal 
fingerprints collected from built-in sensors of the smartphone. 
Signal fingerprint includes RSS values for the medium access 
control (MAC) address of the AP [82]. RCILS consists of the 
following two phases: the radio map construction and the 
trajectory fingerprint-based localization phase. In the first 
phase, the radio map is automatically constructed based on the 
data collected by crowdsourcing. In the second phase, RCILS 
performs the online localization by matching a collected RSS 
sequence with fingerprints in the radio map. In the radio map 
construction phase, as shown in Fig. 18, RCILS uses activity 
detection algorithms to detect user activity based on data 
collected by crowdsourcing and estimates the distance 
between two activities by using PDR algorithm. RCILS uses 
the indoor map as a known element and constructs a semantic 
graph G = (V, E), as shown in Fig. 19. Each edge e = (v1, v2) 
represents the trajectory between v1 and v2.  

RCILS matches the trajectory with the indoor map and 
obtains the position of the trajectory based on the activity 
sequence and semantic graph of the indoor map. Subsequently, 
RCILS labels the signal observations based on the localization 
and generates a radio map with labeled signal observations. In 
the trajectory fingerprint-based localization phase, the RSS 
vector collected in the walking process constitutes a RSS 
sequence. The length of the sequence is determined by PDR 
algorithm. Based on the generated RSS sequence, RCILS 
performs localization by matching it with previously generated 
sequence-based radio map. 

Various experiments were conducted in a 52.5 m × 52.5 m 
building to evaluate RCILS. Participants moved to accessible 
areas of the building with two handsets of two types of 
smartphones. Participants started moving from different 
locations for crowdsourcing. Each test was repeated ten times. 
Three participants used two smartphones to collect a total of 
200 user trajectories for 220 minutes. The positioning error 
decreases when the amount of crowdsourced data increases, as 
shown in Fig. 20. With respect to 15 min of data, the 80th 

 
Fig. 18.  Radio map construction phase. 

 
Fig. 19.  Indoor map and semantic graph based on map [80]. 

 
Fig. 20.  Location error with incremental data [80]. 
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percentile of the localization error is approximately 21 m. For 
45 min of data, the 80th percentile of the localization error is 
reduced to approximately 15 m. The localization errors 
significantly decreased when the amount of data increases 
from 15– 45 min. 

RCILS displays an average error of 1.6 m in a medium-sized 
building. RCILS is extremely accurate because it exploits 
various sensor information, as well as Wi-Fi signals.  
However, RCILS requires an indoor map as preliminary 
information, and it is difficult to obtain proper localization 
performance during early service because it is based on 
crowdsourcing. 

 

VI. COMPARISON OF TECHNIQUES 

The introduced technologies have their own characteristics, 
including advantages and disadvantages. We analyze these 
technologies with six parameters: accuracy, calculation time, 
versatility, robustness, security, and participation.  
 Accuracy: The most important criterion in positioning 

technology is the accuracy [107, 108]. Specifically, the 
error of positioning technology indoors is misleading 
because the user could be in a completely different room 
even with a small error corresponding to only 
approximately 1–2 m. Therefore, the error rate of an 
indoor positioning technology is significantly important in 
the evaluation. 

 Calculation time: Users use a service or application that 
utilizes the indoor positioning technology in the mobile 
device. In this case, a user should be able to quickly 
calculate the speed of his or her own position [109]. The 
performance of mobile devices is lower than that of 
general laptops [110]. Thus, indoor positioning 
technologies must perform calculations quickly in inferior 
computing environments. 

 Versatility: Most studies report experimental results within 
a limited range owing to geographic area and the number 
of mobile devices [111, 112]. However, technologies are 
used in various locations such as schools, hospitals, 
shopping malls, and offices. Their architectures are 
different, and different construction may even be used in 
the same building. Positioning technologies must operate 
in variable indoor environments and not only in a limited 
space. 

 Robustness: Robustness is an attribute that ensures that 
indoor positioning technologies provide location services 
even in unpredictable situations [113]. Examples of 
unpredictable situations include misbehavior of an AP or 
user’s mobile device, and addition, change, or deletion of 
components within a positioning system. Specifically, in 
an indoor environment, this attribute is important because 
the aforementioned unpredictable situations are very 
frequent. 

 Security: Indoor positioning technologies must use a user’s 
location data. That data involves sensitive information and 
user privacy. Indoor positioning technologies that use this 
data must prevent data from flowing out. The technology 
must protect a server as well as application if the 
technology uses a server [114–116]. There must be no 
intermediary use of the data if the technology receives the 
user’s position in real time.  

 Participation: There is also a way to obtain information 
from the user in the method of collecting the initial data.  
The server collects the obtained information and improves 
the accuracy of the map. However, in this case, it is 
difficult for the server to obtain accurate information if 
there are few of participants to provide the information.  

GP-LVM shows an error rate of 3.97 m at 600 m2. GP-LVM 
also works on the client device, and it is secure. GP-LVM 
does not get data from users, so it does not need any 
participation. However, GP-LVM includes a few additional 
problems as well as a method to express it. GP-LVM is not 

TABLE I 
ANALYSIS FOR THE REVIEWED TECHNOLOGIES 

 Accuracy Calculation Time Versatility Robustness Security Participation

GP-LVM 
3.97 m error 

inside 600 m2 
O(n3) No No Yes Not required

GraphSLAM 
2.18 m error 

inside 600 m2 
O(n2) Yes Yes Yes Not required

WiSLAM 
5.4 m error 

inside 800 m2 
Derivate from 
Bayesian filter 

Partially Partially Yes Not required

TIX 
5.4 m error 

inside 1020 m2 
Light algorithm Partially Partially Yes Not required

SDM 
3 m error 

inside 598 m2 
Light algorithm Partially Partially Yes Not required

Walkie 
-Markie 

1.65 m error 
inside 3600 m2 

Novel algorithm 
to identify Wi-Fi marks

Yes Yes No Required 

RCILS 
3 m error 

inside 598 m2 
Light algorithm Yes Yes No Required 
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extended to compute a large data set, and thus it is necessary 
to perform O(n3) operations for each iteration for the 
dimension of the state space (i.e., the number n of estimated 
pauses). This significantly hinders the online operations on 
mobile devices. Additionally, the map should be limited to a 
very specific shape. A fingerprint is assumed to be unique at 
each location and works well only in high-signal environments 
under these assumptions. Furthermore, if the travel record 
information is absent, then an arbitrary assumption is formed 
about the human gait pattern and data association. GP-LVM 
includes significant problems related to calculation time, 
versatility, and robustness. 

GraphSLAM displays an error rate of 2.17 m at 600 m2. 
GraphSLAM is designed to operate offline and inherits the 
advantages of GP-LVM. It ensures security and exhibits a 
lower error rate when compared to GP-LVM given the same 
area size. In contrast to GP-LXM, it does not limit the place 
and the versatility improves. Additionally, GraphSLAM does 
not need data from users, and thus it satisfies participation. 
However, GraphSLAM is faster than GP-LVM, although it 
displays O(n2) time complexity and is still too computationally 
intensive to be operated online on a smartphone. Therefore, it 
is difficult to operate GraphSLAM online. The 
aforementioned aspects are collectively considered, and 
GraphSLAM compensates for the problem of GP-LV, 
although it eventually presents a significant problem in terms 
of calculation time when used in mobile devices. 

WiSLAM displays an error rate of 5.4 m at 800 m2. 
WiSLAM also operates on client devices; thus, it is secure. 
WiSLAM does not need users’ data; thus, it satisfies 
participation. However, it does present certain problems. 
Although it does not match locations, such as GP-LVM does, 
WiSLAM is affected by the location of the APs. Therefore, a 
change in the location of the AP makes it necessary to re-write 
the algorithm. This is a problem in terms of the robustness and 
calculation time. Additionally, the versatility is not perfect in 
this aspect. 

TIX displays an error rate of 5.4 m at 1020 m2. TIX is also 
operated on the client device, and thus it is also relatively safe 
from external attacks. Furthermore, it uses a very lightweight 
algorithm when compared to GP-LVM or WiSLAMl therefore, 
it does not linger on mobile device. Hence, TIX also satisfies 
the calculation time requirements. TIX does not use data from 
users, but rather uses RSS of APs; thus, it satisfies 
participation. In terms of versatility, TIX does not rely on 
topology, although it does not match completely because it 
relies on AP. 

SDM displays an error rate of 3 m at 598 m2. SDM is the 
same as TIX in several aspects. It has the same features and 
problems as TIX for all items, with the exception of accuracy. 
SDM displays a better accuracy rate than TIX. 

Walkie-Markie displays an error rate of 1.65 m at 3600 m2. 
This is the lowest error rate among the studies presented. 
Walkie-Markie also satisfies the versatility and robustness 
requirements because it does not involve any additional 
requirements such as an AP plan or a floor plan. Furthermore, 
the data is received from several users and the map is created, 

and thus a user can play the role of the investigator in 
providing information to the service or application side. 
However, the crowdsourcing method involves receiving from 
several individuals, and thus it is less secure when compared 
to the methods used in other studies in terms of security. 
Additionally, because Walkie-Markie relies heavily on users 
for early information gathering, early maps have a high error 
rate. Hence, Walkie-Markie requires time to identify Wi-Fi 
marks. It takes long time to calculate a map. 

RCLIS displays an error rate of 4 m at 2756 m2. 
Crowdsourcing produces maps with less time complexity than 
that created by a single individual. It is also compatible with 
universality because it is not restricted by location, and it is 
also robust to the use of other sensors as well as signals. 
However, it is difficult to satisfy security requirements with 
RCLIS because it is based on crowdsourcing. For the same 
reason, RCILS does not easily satisfy participation. 

 

VII. FUTURE RESEARCH DIRECTION 

The studied techniques should not just terminate at the 
research stage. It is worthwhile to use the techniques in real 
life. In this section, we discuss the future research directions 
focusing on the performance parameters, which is necessary 
for indoor positioning techniques to be commercially 
available. 

The primary performance metric of indoor positioning 
techniques is the accuracy. So far, the researchers have 
improved the accuracy of indoor positioning by 
complementing the problems of one area of technique or by 
applying other areas of technology. The recent techniques 
improve the accuracy of indoor positioning by combining two 
different techniques. DeepFi [117] is the deep-learning based 
fingerprint indoor positioning technique with channel state 
information (CSI) [118]. DeepFi composes in two phases 
same as original fingerprint technique, the offline training 
phase and the online location estimation phase. DeepFi are 
based on the three hypotheses on CSI, different with original 
phases. In the offline training phase, deep learning is utilized 
to learn all the weights of the deep network as fingerprints. 
Additionally, the greedy training algorithm [119] is used to 
train the weights layer-by-layer to reduce complexity. In the 
online location estimation phase, the probabilistic method 
based on the radial basis function is used to obtain the 
estimated location [120]. Similar to DeepFi, it is possible to 
improve the accuracy by merging different techniques. [121–
124] improves the accuracy of indoor positioning exploiting 
WiGig. WiGig is a technology that supports multi-gigabit 
wireless transmissions using 60 GHz license-free band [125, 
126]. The 60 GHz pulse has a very short period, which is free 
from delay caused by multipath propagation [117]. Therefore, 
accurate indoor positioning is possible based on this. Various 
indoor positioning studies based on WiGig have been devised 
[121–124]. 

Calculation time is also an important parameter of the indoor 
positioning. When using other techniques or devices together 
to improve accuracy, they may follow different standards [127, 
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128]. It often causes the increase of the calculation time, 
which leads to a degradation of the overall technique. 
Cross-technical communication (CTC) is an important 
technique for directly exchanging information between 
heterogeneous standards. The existing works enable CTC by 
exploiting a side channel like frequency, amplitude or 
temporal modulation. However, they have limited 
performance under channel noise. WiZig is the CTC technique 
which uses modulation techniques in amplitude and time 
dimensions to optimize throughput for noise channels [129]. 
First, the theoretical model of the energy communication 
channel is established to understand the channel capacity. An 
online rate adaptation algorithm is devised to adjust the 
modulation strategy according to the channel condition. 
Subsequently, to optimize the CTC throughput, WiZig 
accurately controls the number of encoded energy amplitudes 
and the length of a receiving window based on the theoretical 
model. WiZig shows the achievement less than 1% symbol 
error rate in the real environment. 

Most techniques show a low error rate in evaluation step. 
However, some results limit the shape or type of measurement 
environment in advance. These constraints prevent techniques 
from being used universally, which means that it doesn’t have 
versatility and robustness. Therefore, researchers study 
general-purpose techniques that can be tracked without the 
limitation of location. The evaluation is not fixed in one place, 
but a place with different size and structure is used because of 
this reason. SemanticSLAM is a good example of such 
techniques [130]. SemanticSLAM is an indoor positioning 
technique that performs positioning with SLAM algorithm 
through two types of landmarks. SemanticSLAM selects the 
landmarks in an indoor environment with the transmitted data, 
which is measured by the user’s device by inner sensors, such 
as gyros and accelerometers. Landmarks are classified into 
two types. One type is fixed landmark, which is determined by 
the structure of building measured from the inner sensor of the 
user device. Fixed landmarks do not vary according to the user. 
The other one is fluctuating landmark, which is determined 
according to the indoor wireless signal measured from the user 
device. Fluctuating landmarks may vary from user to user 
since the measurements vary from mobile device to mobile 
device. After the landmarks are defined, SemanticSLAM 
calculates SLAM algorithm with landmarks. SemanticSLAM 
conducts indoor positioning with landmarks which is based on 
user’s device, it is not affected by the structure or type of the 
building. 

Indoor positioning techniques must use the location 
information of users, which is an important privacy [131]. 
Thus, security is the one of the important requirements of 
indoor location tracking techniques. There are many privacy 
models to protect user’s location information from the external 
attacks like k-anonymity [132–134], t-closeness [135, 136], 
and l-diversity [137, 138]. Recently, a technique called 
randomized aggregatable privacy-preserving ordinal response 
(RAPPOR) has attracted attention. RAPPOR is the privacy 
model that makes user’s information confidential and makes it 
available data [139, 140]. The RAPPOR algorithm consists of 

four steps with the user’s actual location values and 
parameters. They are performed in local, and generated data is 
sent to the server. First, the position data is hashed in Bloom 
filter B [141]. Further, we pass the ݅௧௛ bit of B in the special 
equation as a random response with parameter ݂ which is a 
designation parameter that controls the level of the privacy. 
After the equation, position data in the ݅௧௛  bit of B is 
converted into new value that is identified as ܤᇱ. With the ݅௧௛ 
data of S, which is a set of ܤᇱ, is set as 1 or 0 according to the 
probability. The resulting P, the set of result 1 and 0, is sent to 
the server. Other techniques, such as K-anonymity, can 
generate data using the original data to identify the data, but in 
the case of RAPPOR, it is impossible to identify the data 
because it is generated through two hashes. 

Even if any localization technique is accurate and 
computationally fast, if it causes the high energy consumption 
of the mobile device, it cannot be used for a long time [142]. 
A representative example is GPS. GPS has the highest 
accuracy and reliability of outdoor tracking systems. However, 
in proportion to this, the energy consumption of GPS is very 
high. Rate-adaptive positioning system (RAPS) has been 
studied to effectively utilize GPS with efficiently consuming 
energy [143]. RAPS cleverly determine when to turn on GPS 
using a collection of techniques. In detail, RAPS use the 
location-time history of the user to estimate user’s speed and 
only turns on GPS appropriately if the uncertainty of the 
estimated location exceeds the accuracy threshold. Further, 
RAPS estimate movement of user with duty-cycled 
accelerometer [144] and use Bluetooth communication to 
reduce position uncertainty among neighboring devices. 
Finally, RAPS detect GPS where we cannot use GPS with cell 
tower-RSS blacklisting and doesn’t turn GPS on in these cases. 
When using RAPS, the lifetime of mobile devices area 
increased 3.8 times as compared to that when GPS was turned 
on continuously. It is necessary to consider how to manage 
energy consumption efficiently when indoor positioning 
techniques are practically used. 
Data made from indoor positioning system which satisfies 

the above properties can be applied in various place. For 
example, indoor localization data can be used for wireless 
radio frequency (RF) energy transport with 60 GHz for 
wireless industrial sensor networks [145-147]. Wireless RF 
energy transport is the effective way to power small wireless 
sensors in wireless industrial sensor networks (WISN) [148]. 
The sensors receive energy from the device called to the sink 
node, which equipped with a horn antenna. However, when 
the sensor is located behind the obstacle, the transfer of energy 
becomes difficult. The solution to this problem is to use 
reflective beamforming [149]. A sink node reflects the signal 
to an element such as a ceiling and sends it to the sensors. This 
creates a line of sight path between the sink node and the 
sensor, by passing obstacles. In here, localization data use for 
radio beamforming. We use the positioning system to locate 
the sensor in detail and install an appropriate reflector antenna. 
This allows more efficient energy transfer. One more example 
is that we can use indoor localization data for rescue or 
evacuation in the emergency [150–152]. Indoor positioning 
acts an important role in Emergency Rescue Evacuation 
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Support System (ERESS) [153] by locating individuals inside 
the building and guiding people to a safer place. In addition, 
when ERESS is used to evacuate, the infrastructure indoor can 
be broken due to disaster. Because of this reason, the 
fingerprint technique is not expected to achieve the accuracy 
in emergency situations. When designing indoor positioning 
system, we need to consider reducing the excessive 
dependence of indoor infrastructure. 
 

VIII. CONCLUSION 

As the number of mobile device have increased, various 
services and applications in mobile devices, based on a user’s 
location, are becoming prevalent. The importance of 
positioning technology that accurately captures the current 
location of a user is well emphasized. The fingerprint-based 
wireless indoor positioning approach is widely used; however, 
its prerequisite step, the offline fingerprinting map must be 
updated or re-created frequently. Therefore, it consumes 
considerable amount of time and efforts. In this study, we 
survey the recent developments of indoor positioning 
techniques without an offline fingerprinting map. We classify 
them into three categories: SLAM, inter/extrapolation, and 
crowdsourcing-based technologies. We present their 
algorithms and characteristics, including advantages and 
disadvantages. We compare them in terms of our own 
parameters: accuracy, calculation time, versatility, robustness, 
security, and participation. The SLAM series techniques are 
good in terms of accuracy, security, and participation, but 
inefficient in terms of calculation time, versatility, and 
robustness. The inter/extrapolation techniques are good in 
terms of calculation time, security and participation, but 
inefficient in terms of accuracy, versatility, and robustness. 
The crowdsourcing-based technologies are good in terms of 
accuracy, calculation time, versatility, and robustness, but 
inefficient in terms of security and participation. Finally, we 
present the future research direction of the indoor positioning 
techniques. We believe that this study provides a useful 
perspective and necessary information for recent indoor 
localization technologies without offline fingerprinting map 
construction. 
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